Computer-Assisted Reading and Discovery for Student Generated Text in Massive Open Online Courses
DOI:
https://doi.org/10.18608/jla.2015.21.8Keywords:
Massive Open Online Courses, topic modelling, text analysis, computer‐assisted readingAbstract
Dealing with the vast quantities of text that students generate in Massive Open Online Courses (MOOCs) and other large-scale online learning environments is a daunting challenge. Computational tools are needed to help instructional teams uncover themes and patterns as students write in forums, assignments, and surveys. This paper introduces to the learning analytics community the Structural Topic Model, an approach to language processing that can 1) find syntactic patterns with semantic meaning in unstructured text, 2) identify variation in those patterns across covariates, and 3) uncover archetypal texts that exemplify the documents within a topical pattern. We show examples of computationally aided discovery and reading in three MOOC settings: mapping students’ self-reported motivations, identifying themes in discussion forums, and uncovering patterns of feedback in course evaluations.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) license that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).