Is Learning Data in the Right Shape?
DOI:
https://doi.org/10.18608/jla.2017.42.12Keywords:
Learning, modeling, linearity, complexity theoryAbstract
In this short thought-piece, I attempt to capture the type of freewheeling discussions I had with our late colleague, Mika Seppälä, a research mathematician from Helsinki. Mika, not being a psychometrician or learning scientist, was blissfully free from the design constraints that experts sometimes ingest, unwittingly. I also draw on delightful conversations with the German research mathematician, Heinz-Otto Peitgen, a polyglot whose work includes advances in medical imaging and explorations in fractal geometry for K–12 students. Together, they taught me to reconsider foundational assumptions about learning, how to describe it, and how to grow it. Accordingly, I use this set of papers as a prompt for examining assumptions that numerical precision ensures scientific insight, that linear models best capture growth in learning, and that relaxing a fixation with time (exemplified by the reification of pre- and post-testing) might open up new topologies for describing, predicting, and promoting learning in its myriad manifestations.
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Journal of Learning Analytics

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) license that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).